
 1

Emerging Technologies for V&V of ISHM Software for
Space Exploration

Martin S. Feather

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr
Pasadena, CA 91109

818-354-1194
Martin.S.Feather@jpl.nasa.gov

Lawrence Z. Markosian

QSS Group, Inc.
NASA Ames Research Center

Moffett Field, CA 94035
650-604-6207

lzmarkosian@email.arc.nasa.gov

Abstract—Systems1,2 required to exhibit high operational
reliability often rely on some form of fault protection to
recognize and respond to faults, preventing faults’
escalation to catastrophic failures. Integrated System Health
Management (ISHM) extends the functionality of fault
protection to both scale to more complex systems (and
systems of systems), and to maintain capability rather than
just avert catastrophe. Forms of ISHM have been utilized to
good effect in the maintenance phase of systems’ total
lifecycles (often referred to as “condition-based mainte-
nance”), but less so in a “fault protection” role during actual
operations. One of the impediments to such use lies in the
challenges of verification, validation and certification of
ISHM systems themselves. This paper makes the case that
state-of-the-practice V&V and certification techniques will
not suffice for emerging forms of ISHM systems; however,
a number of maturing software engineering assurance
technologies show particular promise for addressing these
ISHM V&V challenges.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. ISHM SOFTWARE CHALLENGES..........................2
3. EMERGING V&V TECHNOLOGIES........................3
4. DEVELOPMENT APPROACHES...............................8
5. CONCLUSIONS ...10
6. ACKNOWLEDGEMENTS10
7. REFERENCES ...10
BIOGRAPHY ...15

1. INTRODUCTION

There is increasing interest in Integrated System Health
Management (ISHM) for space vehicles, including human-
rated space transportation systems [1], [2]. ISHM goes
beyond fault protection (FP) and fault detection, isolation
and recovery (FDIR) by monitoring and predicting system
performance, diagnosing faults, and planning and even
controlling vehicle behavior in the presence of faults and
1
1 0-7803-9546-8/06/$20.00© 2006 IEEE
2 IEEE Aerospace Conference paper #1441, V-2, Nov 11, 2005

other off-nominal scenarios. Future spacecraft will operate
autonomously while orbiting the moon and planets for
extended periods of time while their entire crew descends to
the surface in a separate lander. Crew members and ground
controllers will be required to communicate with the
orbiting spacecraft and monitor its "vital signs" remotely.
By way of contrast, during the Apollo era, one astronaut
stayed with the "mother ship", while the lunar lander
carrying two astronauts descended to the moon.

The human-rating requirements for US spacecraft includes a
“two fault-tolerance” requirement that it shall be able to
detect, isolate and recover from two subsystem failures. By
comparison, Apollo generally had only single fault
tolerance.

A major impediment to ISHM acceptance is the perceived
inability to certify it for mission- and safety-critical systems:
it is necessary to show that ISHM, in concert with the
system it manages, indeed exhibits the required levels of
reliability, and that ISHM cost-effectively increases the
reliability of the entire system over the reliability of the
underlying system without ISHM. Unlike other possible
contexts for ISHM, in the spacecraft context it is infeasible
to implement it and gather the evidence demonstrating its
success over a long period of representative testing.

The principal thesis of this paper is that ISHM faces
significant V&V impediments: specifically, current state of
the practice V&V and certification techniques do not scale
up to the challenges that ISHM poses; however, there are
emerging V&V technologies that address these challenges.

In the more general context of critical software, the
challenges posed by FAA-mandated certification of
aerospace software were outlined several years ago [3]. A
similar perspective on this same issue is reported in [4].
V&V issues for advanced software technologies planned for
a spacecraft’s use were the topic of [5].

The next section summarizes ISHM software challenges.
Then we discuss a variety of emerging V&V/certification
technologies that are potentially enabling for ISHM and

 2

ISHM-like systems. Section 3 describes development
technologies that complement, and in some cases enable,
the V&V technologies. Those sections provide evidence
that current planning for ISHM should include planning for
the maturation and application of these V&V technologies.
Section 4 then discusses the interplay between development
practices and V&V/certification challenges. Section 5
provides our conclusions. Finally we provide an extensive
bibliography documenting relevant research directions.

2. ISHM SOFTWARE CHALLENGES

There are several fundamental reasons that V&V of ISHM
is difficult. First, most of the scenarios that ISHM is
designed to manage are off-nominal. For these scenarios, it
is hard to know that all the significant possible failure
modes have been identified; and for any failure mode, its
characteristics may not be well understood.

Also, there is a large number of off-nominal scenarios. For
example, if there are 1,000 possible failures, then there are
potentially 1,000,000 pairs of such failures. Even if not all
of these combinations are possible, the order-of-magnitude
number of pairwise combinations grows as the square of the
number of individual possible failures.

Thus, ISHM systems are challenging in terms of the sheer
number of their possible executions—they exhibit a large
“state space”. Human rating requirements state that testing
is required to “verify and validate the performance, security,
and reliability of all critical software across the entire
performance envelope”, which includes much of this state
space.

In addition, ISHM must not only detect and handle off-
nominal scenarios, but it must avoid “false alarms”. For
example, ISHM needs to distinguish engine failure from
failure of the sensors monitoring the engine’s health; the
algorithms that perform this function must be extremely
reliable, since they are in continuous operation.

For a survey of the state of the practice for V&V of ISHM
for space exploration, see [6], which discusses both the
limitations on current ISHM V&V and the inability of
current practice to scale up.

The preceding challenges to V&V of ISHM are derived
from the requirements levied on ISHM. In addition, there
are challenges that arise from the way ISHM is designed
and implemented. We discuss the second set of challenges
in the next section, since the appropriate V&V technologies
are often specific to design and implementation techniques.

Figure 1: ISHM Lifecycle Stages and V&V Challenges

 3

3. EMERGING V&V TECHNOLOGIES

The unusual role and nature of ISHM software raises both
challenges for V&V and certification, and opportunities to
amplify the efficacy of existing techniques, and to make use
of some new and emerging V&V techniques that offer the
promise of overcoming some of those key challenges. This
section describes the origins of those opportunities, and
gives some representative examples of emerging V&V
techniques.

ISHM Architecture

Emerging forms of ISHM are likely to be architected using
a combination of hierarchical composition and model-based
reasoning. In hierarchical composition, each subsystem will
perform its own health management, and will propagate its
status, and if necessary the faults it cannot manage locally,
to the system of which it is a part. In model-based
reasoning, a generic reasoning engine will operate over
system-specific models.

Hierarchical composition potentially favors V&V by
allowing analysis itself to take advantage of the hierarchy,
subdividing the V&V into manageable portions. V&V of
this kind, often referred to as “hierarchical verification” or
“compositional verification”, is an area of current interest
within the V&V community. For a discussion of some of
the issues, see [7]; for an example of a whole workshop
focused on the topic, see [8]. Some of this work has been
applied to NASA missions, e.g., [9]. Compositional
verification, while potentially usable with a variety of
verification techniques, often incorporates model checking
(discussed separately below) to verify system designs, but
the combination can also be applied to verify the source
code as well. [10] discusses an application to a NASA
robotic controller.

Figure 2: Model-Based ISHM Architecture

Model-based approaches to ISHM yield an ISHM system
architecture divided into a generic, and therefore reusable,

reasoning engine, and system-specific models as shown in
Figure 2 (adapted from [11]). The reasoning engine itself is
a non-trivial piece of software, and so the correctness of its
implementation needs to be checked. However, since it will
be reused from application to application, the effort it takes
to check that implementation can be amortized over those
multiple applications. An example of this is in [12], where
validation is performed on properties of the core of a
spacecraft’s fault protection system—the core “engine”
orchestrates the handling of fault reports and the running of
responses to handle them.

Models Used in ISHM

In order that ISHM can perform its reasoning (e.g.,
diagnose the cause of a fault from a set of symptoms), those
models are designed to be machine-manipulable by the
ISHM reasoning engine itself. V&V can also benefit from
such machine-manipulable models. As stated in [13],
“These models are often declarative and V&V analysts can
exploit such declarative knowledge for their analysis”.

Many of the emerging V&V techniques perform analysis –
for V&V purposes – over the same kinds of models that
ISHM utilizes. The adoption of those V&V techniques in
traditional software settings has always been impeded by
the need to construct such models by hand, from the various
forms of system documentation intended for human, but not
computer, perusal (e.g., requirements stated in paragraphs
of English). Hand-construction of V&V models is
expensive and time-consuming, and as a result their
application has, in practice, been limited to only the most
critical core elements of software and system designs (for an
in-depth discussion, see [14]). A representative example
drawn from the spacecraft fault protection domain is [15]’s
use of “model checking” applied to the checkpoint and
rollback scheme of a dually redundant spacecraft controller.
In contrast, in model-based ISHM, such models are
available early in the lifecycle, the ideal time to benefit from
the results of analysis. Automatic translation from the form
of ISHM-like models to the form of V&V models has been
shown to be feasible, e.g., [16] illustrates such an approach
in which they translate statecharts into the input form for the
model checker SPIN (see Figure 3 below); [17] translate
models in Livingstone (a model-based health management
system [18]) into the model checker SMV [19] reports
experiments to translate AI planner domain models into
SMV, SPIN and Murphi model checkers, allowing a
comparison of how the different systems would support
specific types of validation tasks. We discuss model
checking in more detail later in this section.

Controller

Reasoning
Engine

Domain
Model

Spacecraft

Commands Observations
Model of

 4

Figure 3: Translating ISHM Models for V&V

Traditional techniques, such as testing, can also leverage the
availability of such models. For example, [20] describes test
automation (generation of the test cases, test drivers, and
test result evaluation) utilizing models, demonstrated on the
ill-fated Mars Polar Lander software design. Human-
conducted activities such as reviews and inspections may be
well-suited to scrutiny of declarative models.

Another source of opportunity offered by model-based
reasoning is that the reasoning software can yield both its
result (e.g., a diagnosis), and the chain of reasoning that led
to that result. That chain of reasoning provides opportunities
for cross-checking – not only checking that the result is
correct, but also that it is correct for the right reasons (e.g.,
all the appropriate information was taken into account when
arriving at its conclusion). For an example of this used
during testing of a spacecraft experiment’s AI planner, see
[21].

Diagnosability—An important property of ISHM systems is
that they are adequate to support diagnosis of a specified
class of faults. Often termed diagnosability, this means that
using the information available from sensors, the ISHM
system is always able to distinguish whenever the system is
in a fault state, and if so, disambiguate which fault state it is.
Note that this is a property of a combination of the
spacecraft system (what states it can exhibit), the sensors
(what information about the system state they make
available to ISHM), and the reasoning capabilities of the
ISHM system. For example, if among the spacecraft
system’s possible behaviors there are two scenarios that
lead to system states required to be distinguished, and yet
the sensor information made available to the ISHM system
is exactly the same for both those scenarios, then it would
clearly be impossible for the ISHM system to make the
distinction. For a discussion of diagnosability and
approaches to its attainment, see [22] and [23]. An approach
to verification of this property is described in [24].

Figure 4: Architecture of a Diagnosis System
(from [Cimatti et al, 2003])

For V&V of the system as a whole, [25] and [26] discuss
an approach that focuses on advanced simulation of the
actual software (as opposed to verification of the model
only). Concretely, this has been implemented in the
Livingstone PathFinder (and Titan PathFinder) framework.
Although this approach does not address diagnosability
directly, it can catch diagnosis errors that may be traced
back to diagnosability issues. They discuss an application of
this approach to the main propulsion feed subsystem of the
X-34 space vehicle.

Model Checking—Earlier in this section we discussed
applications of model checking to ISHM. Here we take a
closer look at this technology.

Model checking [27] is a method for formally verifying
finite state systems. Model checking can be applied to
designs for both hardware and software, and, more recently,
to application source code. Historically, model checking
was initially applied to communication protocol
verification. Since then, particularly since the Intel Pentium
bug, model checking has become a standard industrial
verification technology for hardware, with hundreds of
practitioners.

In this paper, we focus on the application of model checking
to software, a field that has developed rapidly over the past
eight years. Model checking is especially aimed at the
verification of reactive, embedded systems, that is, systems
that are in constant interaction with their environments.
ISHM is an example of such a system. These systems are
extremely hard to test using traditional techniques, which
usually require hand-generated test cases.

 5

Figure 5: State space of an example concurrent system
with two activities

One reason these systems are hard to test is the nondeter-
minism resulting from multithreading. In contrast to testing,
model checking can verify such systems because it can
explore the relevant part of the system’s state space,
including nondeterministic branching.

Figure 3, shows two very simple activities, each of which
from time to time requests use of the same resource (this
illustration is based on an example presented in [28]). Each
activity transitions (boxes 1 and 2) between three states:
“A” for Asleep (the activity isn’t doing anything), “R” for
Requesting (the activity is preparing to use the shared
resource), and “U” for Using (the activity is using the
shared resource). A shared variable “Free”, which can take
on values “Y” or “N”, is used as a semaphore by these two
activities in such a way that they never are both using the
shared resource at the same time.

Each activity can be in one of three states, and the variable
can hold one of two values, so in principle the state-space of
their combination is 3x3x2 = 18 states. However, from the
starting point of both activities asleep and Free=Y, not all of
these 18 states are reachable (essentially because either
activity’s transition from Requesting to Using can take

place only if Free=Y). The lower box “interleaving of 1&2”
shows the eight states that are reachable from one another.

Model checking takes as input the activities themselves, and
is able to completely explore the reachable state space. By
so doing, it can answer questions such as “is it guaranteed
that activities 1 and 2 are never both in the Using state at the
same time?”, and “is it always possible to get back to the
initial state (A1,A2,Y)?”. From visual scrutiny of the
interleavings’ state-space it is obvious that the answer to
both of these is “yes”. However, in realistic problems the
state-space is vastly larger, so drawing this out by hand is
infeasible, and traditional testing wouldn’t cover more than
a small fraction of possible paths. Model checking
nevertheless works in such situations by a combination of:

• Very efficient representation of states and transi-
tion graphs (in some forms of model checking
whole sets of states are manipulated at a time), util-
izing advances from the computer science field
(hash tables, binary decision diagrams, ...),

• Avoiding the need to explore all paths when the
model checking algorithm can ascertain that the re-
sult down one path would be the same as the result
down an already explored path, and

• Abstraction – removal or approximation of “irrele-
vant” portions of the state space and/or the data
within the states (e.g., substitution of integer values
with simply negative/zero/positive). Abstraction is
key to scaling model checking to larger problems,
and is an area of active research.

Although originally developed for finite state systems,
model checking has been extended to work with at least
some infinite state systems and also with real-time systems.
 Model checking can verify simple properties such as
reachability and freedom from deadlock (is deadlock
avoided in the system), as well as more complex properties
such as safety (the system never gets into a state with an
undesired property such as exceeding a resource limit) or
liveness (for example, every request eventually obtains a
response).

A key step in model checking is to describe the system in a
state-based, formal way. Typically, a model checker will
require a special purpose system description language be
used for this purpose. More recently, ways have been
developed that allow model checking to work from
programming languages such as Java, C, and C++, thus
enabling model checking to be applied directly to source
code.

Another approach to easing the task of developing the state-
based model is to translate from an alternative state-based
modeling representation already in use. Pioneering work in

 6

this direction was to use StateMate® Statecharts as the
starting point, and translate from them into the input
language of a model checker [29] and [30]; [31] did similar
work starting from UML’s statechart diagrams. Translation
to model checking notations is also evident in other state-
based notations in use in the formal methods community,
e.g., SCR [32], and RSML [33].

Generally the system description is at a higher level of
abstraction than the eventual source code. Thus, some steps
must be taken to ensure the description is consistent with
the code.

Once the system has been modeled in this way, model
checkers can usually verify certain common properties such
as reachability of all states in the model, freedom from
deadlock and lack of race conditions. If more complex
properties are to be verified, the next step is to express them
as specifications using some form of temporal logic. This
logic deals with properties of states and execution paths.
For example, you can assert that a property is true in some
future state or in all future states.

Once the system is modeled and the temporal logic
specifications are written, the model checker is applied. It
traverses the state space of the model and determines
whether the specifications hold. Very large state-spaces can
often be traversed in minutes. The technique has been
applied to complex industrial systems, ranging from
hardware to communication protocols to safety-critical
plants and procedures.

Tools for model checking—Important examples of model
checkers are SPIN, NuSMV, VeriSoft, Java PathFinder and
UPPAAL.

Spin [34] is by far the most popular software model
checker. It was designed to test the specifications of
concurrent, distributed systems—specifically communica-
tions protocols [35], though it is applicable to any
concurrent system. It detects deadlocks, busy cycles,
conditions that violate assertions, race conditions, and
unwarranted assumptions about the relative speeds of
processes. Spin was developed at Bell Labs in the formal
methods and verification group starting in 1980. Spin
targets efficient software verification, not hardware
verification. It uses a high level language to specify
systems descriptions (PROMELA - PROcess MEta
LAnguage). PROMELA is the closest model-checking
specification language to a real programming language.
Spin can be used as a full linear temporal logic (LTL)
model checking system, supporting all correctness
requirements expressible in linear time temporal logic, but it
can also be used as an efficient on-the-fly verifier for more
basic safety and liveness properties. Many of the latter
properties can be expressed, and verified, without the use of
LTL.

Spin has been used to trace logic design errors in distributed
systems design, such as operating systems, data communi-
cations protocols, switching systems, concurrent algorithms,
and railway signaling protocols. Spin uses an “on-the-fly”
approach where not all of the model needs to be in memory
at once. The tool implements techniques to allow it to scale
to handle real applications.

An important limitation on the use of Spin with existing
applications is the need to translate the applications to
PROMELA. Several NASA applications have been
translated to PROMELA and analyzed using Spin. NASA
experience reports can be found in [36] and [37].

Spin developers have implemented partial automatic
translation to address this problem. The FeaVer tools [38]
support translation of C to PROMELA, and are oriented
toward applications in the maintenance phase of the
lifecycle. Spin and related tools and documentation are
available at [39].

Another model checker, NuSMV (New Symbolic Model
Verifier)[40], [41], is a symbolic model checker developed
as a joint project among the Center for Scientific and
Technological Research in Trent, Italy, Carnegie-Mellon
University, the University of Genoa and the University of
Trent. The NuSMV system requires specifications to be
written in computational tree logic (CTL). The input
language of NuSMV is designed to allow the description of
finite state systems that range from completely synchronous
to completely asynchronous, and from the detailed to the
abstract. The language provides for modular hierarchical
descriptions, and for the definition of reusable components.
 CTL allows safety, liveness, fairness, and deadlock
freedom to be specified syntactically.

Most model checkers have not been specialized for handling
real-time systems, where timing aspects are critical.
UPPAAL[42] is a model checker that supports real-time
constraints and has been applied to verification of plan
models [43], real-time controllers, and communication
protocols [44].

Another approach to model checking is to apply the
technique to the program itself. Java PathFinder (JPF) [45]
is a model checker that takes Java byte code as its model.
JPF has been under research and development for seven
years in the Robust Software Engineering group at NASA
Ames Research Center and has been applied to a number of
NASA applications. These include not only Java but also
Lisp and C++ applications that were hand-translated into
Java. In each of these, it has found defects such as a time-
partitioning error (in the DEOS operating system) [37]; and
most of the known, and some previously-unknown,
concurrency errors in the Mars K9 Rover code. JPF can
handle the full Java language, but is subject to engineering
limitations such as the size of programs it can handle. In
mid-2005, JPF was released under an Open Source license

 7

[46]. JPF is also being extended to handle C++ and has
recently been applied to a C++ flight software application
for the Space Shuttle. As with the other major model
checking technologies, there is an active research
community developing JPF extensions, such as abstraction
tools and heuristics for state space search.

Other major research model checkers oriented toward
programming languages include:

• SLAM (for C) [47]

• Verisoft (for C) [48]

• BLAST (for C) [49]

• dSPIN (Spin-based model checker for a subset of C++)
[50]

• Bandera (analysis and abstraction tools for Java
programs that derive models that can serve as input to
variety of model checkers) [51].

Planning and Plan Execution Systems in ISHM

In addition to diagnosing the health status of the systems
they monitor, many ISHM systems will be required to plan
the appropriate actions to recover from unhealthy states, and
to execute those actions. Model-based techniques will play
an increasingly prominent role in the planning and
execution stages, just as in the diagnosis [19]. Artificial
Intelligence techniques for response planning have the same
reasoning engine + models architecture, and so are prone to
the same V&V challenges and opportunities as diagnosis
systems. In addition, a plan execution system (“executive”)
is needed to execute the plans. V&V of this software system
must ensure that the execution of the commands and the
response of the fault protection system conform to pre-
planned behavior. [52] discusses an executive built with
plan verifiability in mind. [53] describes the results of
applying several verification tools to an executive for a
robotic Martian rover.

Core Algorithms

In addition to the verifying the AI components, V&V of
ISHM will require assuring the correctness of its core
algorithms (e.g., fault-tolerance, voting schemes); this kind
of problem has long been appropriate for formal methods
such as theorem proving (e.g., [54]; [55]; [56]).

General-purpose Program Verification Techniques

A large number of general-purpose program verification
techniques commonly applied to many forms of software
are equally applicable to ISHM software. We do not attempt
to summarize them in this paper. Here we list several
general-purpose techniques that are seeing increased use,

and that we believe are well-suited to aid in the verification
of ISHM’s procedural code.

Static Analysis—Static analysis detects defects by analyzing
an application’s source code without actually executing it
(e.g., by tracing through the program’s source-code
statements to ascertain whether every use of a variable is
preceded by its initialization). This means that static
analysis can make determinations that apply to all possible
executions (in contrast to testing, which typically explores
only a subset of possible executions).

Static analysis tools have been available almost as long as
compilers; the earliest statically-detected defects were
syntax errors reported by compilers. The capabilities of
static analysis have grown significantly, and there are now
static analyzers that can detect a wide range of program-
ming errors such as use of uninitialized variables, potential
division by zero, memory leaks, and pointer mismanage-
ment. A major area of research in static analysis is abstract
interpretation [57]. This research has spawned tools, both
research prototypes and commercial products, that attempt
to enable more precise defect detection. A summary of
currently available static analysis tools for C (including one
based on abstract interpretation) can be found at [58].

Typically static analyzers detect only the most general
classes of defects, that is, operations that are incorrect in
any application. Nevertheless, such defects are common
enough, and have sufficient potential to lead to failures, that
reliable detection is important, particularly in aerospace
applications—the well-known Arianne 501 loss was caused
by an arithmetic overflow.

One drawback of static analyzers is the typically high rate
of false positives—non-defects that are reported as
defects—and indeterminate items that the static analyzer
cannot definitively assert to be defects. These must be
filtered one-by-one by the developers themselves, a
burdensome task. An emerging approach to reducing the
frequency of such false positives and indeterminate items is
to combine user feedback, machine learning and statistical
analysis to reduce the error rate in static analysis [59]. A
commercial product is available that incorporates some of
these methods [60].

Efforts have been made to extend the capability of static
analysis by providing information to the analyzer beyond
what is available, or readily derivable, from the source code,
for example, legal ranges of values for input variables.
Given this additional information, static analyzers can both
reduce the number of false positives, and expand the classes
of errors it can detect. Usually this additional information
must be provided by the programmer as annotations in the
source code (usually in the form of inline comments that are
understandable to the analyzer). The Java Modeling
Language (JML) is an example of a language for writing
specifications for Java programs. The aim is to provide a

 8

specification language that is easy to use for Java
programmers and that is supported by a wide range of tools
for specification type-checking, runtime debugging, static
analysis and verification. [61] is an overview of JML tools
and applications. A static analyzer built around JML is the
Extended Static Checker for Java (ESC/Java) [62].
ESC/Java 2 [63] attempts to integrate ESC-style static
analysis with interactive verification to prove that a program
is correct with respect to its JML specification.

Runtime Analysis—Methods that can expand the
information gained from individual test cases would be
useful for testing of the numerous behaviors that ISHM
systems can exhibit – an example of such a method is the
recognition of inconsistent uses of shared variables in a test
run, even if no classical race condition occurs within that
run [64], [65]. [66] describes a similar approach to deadlock
detection.

Testing

We have argued that traditional V&V methods, with their
heavy reliance on testing, will not scale well to the nature of
advanced ISHM. Nevertheless, testing will remain an
indispensable element in the V&V arsenal, and means exist
to amplify its efficacy. This was seen in the V&V of
NASA’s “Remote Agent” – a spaceflight demonstration of
AI technology used to automatically control a spacecraft.
The V&V team’s approach to testing is described in [67].
The two areas their approach (and their experience applying
it) emphasized were of careful selection of test cases, and
judicious use of testbeds (with varying levels of fidelity,
availability and speed). In their selection of test cases they
applied the following techniques:

• Informal, but expert reasoning about the places
where a test case could be taken as representative
of a neighborhood of similar tests (thus obviating
the need to run those other tests),

• Downsizing the test space based on reasoning that
rules out cases not relevant to the mission plan (for
example, discarding those that start from what
would not be possible starting conditions in the ac-
tual mission profile),

• Down-selection of a set of tests that, as a whole,
exercise all combinations of nominal, single varia-
tions from nominal, and some (manually chosen as
key) instances of multiple simultaneous variations
from nominal, test cases

• Metrics to double-check plausible notions of
“coverage” that a test suite provides, and

• Automation to speed up test running and checking
of the results of testing.

Software Reliability Engineering

ISHM systems may be expected to be amenable to
traditional software reliability engineering techniques based
on measurements of defect discovery and removal during

development and test: see [68], [69] for overviews of this
field.

It is plausible to expect that ISHM systems’ models
themselves may also be amenable to measurement-based
techniques, for example, by tracking the number of
corrections made to the models as they undergo inspection,
review, simulation, analysis, and, finally, part of the system
testing process.

4. DEVELOPMENT APPROACHES

Many development factors have a direct effect on how
readily the software product can be V&V’d. For example, a
poor choice of development platform (such as a legacy
programming language) may render many V&V
technologies inapplicable.

Since V&V typically accounts for 50 - 75% or more of the
software lifecycle costs [70], development decisions should
take into account the effect on these costs, even when initial
lifecycle stage costs may be higher as a result. This is
particularly true for long-lived components that can be
expected to undergo maintenance for many years or even
decades.

Traceability of Requirements

Standard development practices call for requirements and
designs to be captured and scrutinized (e.g., via inspections
and reviews), and for traceability among them to be
maintained. Traceability often takes the form of a matrix,
for example, a “requirements traceability matrix” (between
requirements, and system functionality), and a “require-
ments test matrix” (between requirements and test cases).
Use of the latter helps promote the expression of
requirements in a testable form, and helps ensure that the
test plan covers all the requirements.

Beyond these standard practices, the software engineering
community is pursuing more formal (formal in the sense of
“mathematical”, not formal in the sense of “formal
inspections”) treatments of requirements traceability. [71]
provides an overview of this field. These methods help by
encouraging a more thorough elicitation of relevant
information, and allowing the application of machine-
supported mechanisms to check the correctness of
requirements decomposition (the traceability between
requirements at one level of expression, and their equivalent
at the next, more detailed, level). The relevance of this is
highlighted by NASA’s Mars Polar Lander, thought to have
failed because of a problem that traces back to incorrect
mapping of system requirements to flight software
requirements ([72], page 120).

 9

V&V of Design Models

Model-based design is an area of growing attention within
both the software engineering community, and the broader
systems engineering community. In the software
engineering milieu, several early proponents of various
modeling notations worked together to achieve a consensus
in the form of the Unified Modeling Language (UML) [73],
around which a great deal of work has since coalesced.
UML’s “models” are expressed via diagrams, the complete
set of which encompass the expression of structure,
behavior and interaction of the modeled system. Of most
relevance to ISHM’s V&V challenges, UML’s behavioral
models take the form of sequence diagrams, statechart
diagrams (a variant of the Statechart concept originally
propounded in [74]) and activity diagrams. Together, these
provide a set of notations with a commonly agreed upon
semantics. Multiple tool vendors now offer support for
UML (e.g., development environments such as Rhapsody,
Tau, etc.)

In the systems engineering milieu, there an analogous trend
towards more machine-manipulable representations of
development artifacts and their interrelationships. For
example, SysML [75] is a visual modeling language, in a
similar spirit to UML, but designed for systems engineering
applications. Other examples of tool-supported systems
engineering notations include CORE®, from Vitech
Corporation [76], and Cradle®, from 3SL [77].

The key point is that the adoption of model based design
techniques is leading to the capture of much more of the
design information in machine-manipulable formats.
Analysis techniques that help V&V can take advantage of
the availability of this information. In an earlier section we
discussed how the analysis method of “model checking” can
take advantage of existing uses of statechart notations as
source for the formal state-model input it requires. The
other notations of systems modeling are also amenable to
analysis, notably checking consistency and completeness
among the information captured in the multiple diagrams
that document a system design [78], provided those
diagrams are ascribed a sufficiently formal (mathematical)
interpretation [79]. A further advantage they offer is early
feedback through simulation of the models themselves, well
in advance of the creation of production quality code.
Typically, such feedback takes the form of scenarios
(possible execution paths through the model); when
scrutinized by domain experts, the concrete nature of such
scenarios makes it is easy for the experts to recognize
mistakes (e.g., “it shouldn’t have done that at that point...”).
If coupled with some form of animation that renders visible
the execution’s effects and actions, this becomes
particularly effective and palatable [80], [81]. Just as there
are many ways to exercise a piece of software during
testing, there are many ways to exercise a model during
simulation. Deciding which simulations to perform is an
area of ongoing research: [82], [20]; [83] combines this

with runtime monitoring, and describes an application to a
NASA rover controller; [84] apply the approach to a fault
protection system used on several NASA spacecraft.

Prototyping Environment

Prototypes are often constructed for flight software prior to
the deployed implementation. The development environ-
ment for prototypes need not be the same as the one
selected for building the deployed implementation. In fact,
re-use of the prototype as the production system is to be
discouraged if the prototype is to be used as a test oracle (“a
mechanism for determining behavioral correctness of test
executions” [85])—the test oracle and the deployed
implementation should not share the same defects.

Often the selection of the development environment for the
deployed implementation is driven by the lack of choice in
deployment (runtime) platforms, the need to integrate with
other flight applications and hardware, the need for highly
optimized code, the infrastructure costs to switch to a new
development environment, and risk aversion toward
changing what has worked in the past.

On the other hand, prototypes are developed with an
emphasis on speed-of-development to demonstrate correct
algorithms, show the requirements can be met, and help
resolve issues with the requirements. For these purposes, the
development environment for prototyping should support
rapid development and a wide range of V&V tools, and the
ability to quickly implement user interfaces that assist in
human analysis, but that may not be needed in the target
environment.

The prototype should be portable among different platforms
and its development environment should be vendor-
independent. To limit the V&V effort (as well as
implementation effort), development should avoid
implementing functionality that is already available in
libraries (such as container classes, IO libraries, and user
interface toolkits), and should avoid implementing
functionality that is available in the runtime environment,
including memory management and reflection.

Coding Standards

Regardless of the languages selected for ISHM implementa-
tion, observance of coding standards is critical for enabling
V&V. For example, avoiding deeply nested pointers makes
static analysis easier. In object-oriented languages, multiple
inheritance complicates program analysis. General
(language-oriented) coding standards are well-known (for
example, [86]). However, for mission- and safety-critical
code, where there is a heavier burden on V&V, the
“standard” coding standards should be augmented to
encourage design and coding practices that are consistent
with the requirements of V&V technologies. Fortunately
there are “shallow” static analyzers that can detect most
violations of coding standards [87] and some of these can

 10

be extended to incorporate new standards. An extensive
discussion of the risks in using the C++ language for safety
critical systems, as well as mitigations for some of these
risks, is provided in [88] and [89], which focus on defining
a “safer” subset of C++ together with the use of coding
standards, static analysis, testing tools, and manual design
and code reviews.

Aspect-Oriented Programming

Our experience with object-oriented flight software for
spacecraft is that characterizing and observing valid
software behavior during testing can be very difficult. This
is particularly true for software that performs situational
awareness, where the limited outputs conceal a very large
internal state space. In addition, the programming language
features that promote good design by hiding the internal
state of objects from other objects in the system can limit
what the test harness objects can see. An obvious solution is
to integrate the test code into the objects so there is greater
visibility. However, the result is that test code is spread
around throughout the system and is more difficult to
maintain and remove.

Aspect-Oriented Programming (AOP) [90], [91] can be
applied to obtain greater visibility into the internal state
while at the same time avoiding proliferation of test code in
the program’s source files[92]. Once the state properties of
interest are identified, the software can be instrumented
using AOP tools to monitor these properties at specified
points in the program. By maintaining the instrumentation
as aspects, it is possible to separately maintain the test code
and easily insert it into new releases. The aspect code
resides in its own set of source code files, and it is not
necessary to modify the target application to support testing.
This allows easily switching between the instrumented and
uninstrumented code, or selecting arbitrary groups of
instrumentations to be inserted. Again without proliferating
test code in the target application, AOP tools provide
visibility into the state of objects in the system under test.

5. CONCLUSIONS

ISHM software for spacecraft faces significant V&V
challenges for several reasons: most of the scenarios that
ISHM is designed to manage are off-nominal; and there is a
large number of off-nominal scenarios. Human rating
requirements state that testing is required to “verify and
validate the performance, security, and reliability of all
critical software across the entire performance envelope”,
which includes much of the ISHM software’s state space. In
addition, ISHM must not only detect and handle off-
nominal scenarios, but it must reliably avoid “false alarms”,
especially when the response to a false alarm may cause
loss of mission or crew. In addition to these externally-
imposed requirements, the nature of ISHM software
architecture, design and implementation poses its own

challenges to V&V. Traditional V&V practices generally
do not scale up to handling these challenges.

However, there are emerging V&V technologies that may
address most aspects of these challenges. These include
model-based reasoning to V&V ISHM models; plan
execution systems developed with verification in mind;
formal methods for verifying key algorithms; and general
purpose program verification techniques.

Regardless of the V&V techniques to be used, early
development decisions can defeat effective V&V, and thus
it is essential to plan for incorporating maturing V&V
technologies and development technologies that have an
impact on V&V costs. Even if specific V&V technologies
are not yet certified, development should incorporate
practices such as capturing requirements and designs in a
machine-manipulable manner; ensuring traceability from
software artifacts to requirements; and selecting prototyping
environment that provides extensive support for emerging
V&V technologies.

6. ACKNOWLEDGEMENTS

The research described in this paper was carried out at
NASA Ames Research Center and at the Jet Propulsion
Laboratory, California Institute of Technology, and was
funded by both the National Aeronautics and Space
Administration and by the Jet Propulsion Laboratory's
internal Research and Technology Development program.
Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer,
or otherwise, does not constitute or imply its endorsement
by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

7. REFERENCES

[1] Griffin, M. Remarks at 2005 International Astronauti-
cal Conference, Fukuoka, Japan, Oct. 17, 2005. Re-
ported at
http://www.spaceref.com/news/viewpr.html?pid=18071

[2] Northrop Grumman Corporation. “Northrop Grumman-
Boeing Team Unveils Plans for Crew Exploration
Vehi-cle”, SpaceRef.com, Oct. 12, 2005.
http://www.spaceref.com/news/viewpr.html?pid=18022

[3] Committee to Identify Potential Breakthrough
Technologies and Assess Long-Term R&D Goals in
Aeronautics and Space Transportation Technology,
National Research Council Maintaining U.S. Leader-
ship in Aeronautics: Breakthrough Technologies to
Meet Future Air and Space Transportation Needs and

 11

Goals. National Academy Press, Washington, D.C.,
1998.

[4] Hayhurst, K.J. & Holloway, C.M. “Challenges in
Software Aspects of Aerospace Systems,” in Proc. 26th
Annual IEEE NASA Goddard Software Engineering
Workshop, pp. 7-13, Nov. 2001.

[5] Feather, M., Fesq, L., Ingham, M., Klein, S., Nelson, S.
“Planning for V&V of the Mars Science Laboratory
Rover Software,” in Proc. IEEE Aerospace Confer-
ence, 2004.

[6] Markosian, L., Feather, M., Brinza, D. “V&V of ISHM
for Space Exploration,” presented at First Int’l Forum
on Integrated System Health Engineering and Man-
agement in Aerospace, 2005.

[7] Martin, G. & Shukla, S. “Panel: hierarchical and
incremental verification for system level design:
challenges and accomplishments,” in Proc.
MEMOCODE ’03, Formal methods and models for Co-
Design, pp. 97-99, 2003.

[8] de Boer, F. & Bonsangue, M. (eds). Proc. Workshop on
the Verification of UML Models, Oct 2003, Electronic
Notes in Theoretical Computer Science, Volume 101,
pp 1-179, 2004.

[9] Giannakopoulou, D. & Penix, J. “Component
Verification and Certification in NASA Missions,” in
Proc. 4th ICSE Workshop on Component-Based Soft-
ware Engineering, 2004.

[10] Cobleigh, J., Giannakopoulou, D. & Pasareanu, C.
“Assume-guarantee Verification of Source Code with
Design-Level Assumptions,” Proc. ICSE'04: 26th Int'l
Conf. on Software Engineering, Edinburgh, Scotland,
pp. 211-220, May 23-28, 2004.

[11] Lindsey, T. & Pecheur, C. “Simulation-Based Verifi-
cation of Autonomous Controllers with Livingstone
PathFinder,” in Proc. TACAS'04: Tenth Int'l Conf. on
Tools And Algorithms For The Construction And Ana-
lysis Of Systems, Springer LNCS, vol. 2988, Barce-
lona, Spain, pp. 357-371, 2004.
http://ti.arc.nasa.gov/ase/papers/TACAS04/lpf-
tacas04.pdf

[12] Feather, M.S., Fickas S. & Razermera-Mamy, N-A.
“Model-Checking for Validation of a Fault Protection
System,” in Proc. IEEE 6th International Symposium
on High Assurance Systems Engineering; Boca Raton,
Florida, Oct. 2001, pp. 32-41.

[13] Menzies, T. & Pecheur, C. “Verification and
Validation and Artificial Intelligence,” in Zelkowitz,

M. (ed.), Advances in Computers, Volume 65. El-
sevier, 2005.

[14] John Rushby. Formal Methods and the Certi_cation of
Critical Systems. Tech. Rep. SRI-CSL-93-7, Com-
puter Science Laboratory, SRI International, Menlo
Park, CA, Dec. 1993. Also issued under the title
"Formal Methods and Digital Systems Validation for
Airborne Systems" as NASA Contractor Report 4551,
December 1993. URL
http://www.csl.sri.com/papers/csl-93-7/

[15] Schneider, F., Easterbrook, S.M., Callahan, J.R. &
Holzmann, G.J. “Validating requirements for fault
tolerant systems using model checking,” in Proc. 3rd
Int. Conf. on Requirements Engineering, 6-10 Apr
1998, pp 4-13.
http://gltrs.grc.nasa.gov/cgi-
bin/GLTRS/browse.pl?1990/CR-185259.html

[16] Pingree, P. J., Mikk, E., Holzmann, G. J., Smith, M.
H. & Dams, D. “Validation of Mission Critical Soft-
ware Design and Implementation using Model Check-
ing,” in Proc. 21st Digital Avionics Systems Confer-
ence, Volume 1, pp 6A4-1 – 6A4-12, Oct 2002.

[17] Pecheur, C. & Simmons, R. “From Livingstone to
SMV: Formal Verification for Autonomous Space-
crafts,” in Proc. 1st Goddard Workshop on Formal
Approaches to Agent-Based Systems, pp 5-7, April
2000.

[18] Williams, B. C. & Nayak, P. P., “A Model-based
Approach to Reactive Self-Configuring Systems,” in
Proc. AAAI-96, 1996.

[19] Penix, J., Pecheur, C., & Havelund, K. “Using Model
Checking to Validate AI Planner Domain Models,” in
Proc. SEL'98: 23rd Annual Software Engineering
Workshop, NASA Goddard, Dec. 1998.
http://ti.arc.nasa.gov/ase/papers/SEL98/Penix-SEL-
Workshop.pdf

[20] Blackburn, M., Busser, R., Nauman, A., Knicker-
bocker, R. & Kasuda, R. “Mars Polar Lander fault
identification using model-based testing,” in Proc. 8th
IEEE International Conference on Engineering of
Complex Computer Systems, 2-4 Dec. 2002 pp. 163-
169.

[21] Feather, M.S. & Smith, B. “Automatic Generation of
Test Oracles – From Pilot Studies to Application,” in
Proc. Automated Software Engineering (Kluwer); Vol
8, No. 1, Jan 2001, 31-61.

[22] Sampath, M., Sengupta, R., Lafortune, S., Sinnamo-
hideen, K., & Teneketzis, D.C. “Diagnosability of

 12

discrete-event systems,” IEEE Transactions on Auto-
matic Control, vol. 40, no. 9, pp. 1555-1575, 1995.

[23] Jiang, S. & Kumar, R. “Failure Diagnosis of Discrete
Event Systems with Linear-time Temporal Logic
Specifications,” IEEE Transactions on Automatic
Control, vol. 49, no. 6, June, 2004.

[24] Cimatti, A., Pecheur, C. & Cavada, R. “Formal Verifi-
cation of Diagnosability via Symbolic Model Check-
ing,” in Proc. IJCAI 2003: 18th Int'l Joint Conf. on
Artificial Intelligence, Acapulco, Mexico, pp. 501-
503, Aug. 9-15, 2003
http://ti.arc.nasa.gov/ase/papers/MOCHART02/VVDi
ag-ECAI.pdf

[25] Lindsey, T. & Pecheur, C. “Simulation-Based Verifi-
cation of Livingstone Applications,” in Proc. DSN
2003: Int'l Conf. on Dependable Systems and Net-
works, San Francisco, CA, pp. 741-750, June 22-25,
2003. http://ti.arc.nasa.gov/ase/papers/DSN03/lpf-
dsn03.pdf

[26] Lindsey, T. & Pecheur, C. “Simulation-Based Verifi-
cation of Autonomous Controllers with Livingstone
PathFinder,” in Proc. TACAS'04: Tenth Int'l Conf. on
Tools And Algorithms For The Construction And
Analysis Of Systems, Springer LNCS, vol. 2988,
Barcelona, Spain, pp. 357-371, 2004.
http://ti.arc.nasa.gov/ase/papers/TACAS04/lpf-
tacas04.pdf

[27] Clarke, E.M., Grumberg, O. & Peled, D. Model
Checking. MIT Press, 1999.

[28] Visser, W. “Sofware Model Checking”, available at
http://ase.arc.nasa.gov/visser/ASE2002TutSoftwareM
C-fonts.ppt

[29] N. Day. A Model Checker for Statecharts (Linking
CASE tools with Formal Methods). Technical Report
93-35, October 1993, Integrated System Design Labo-
ratory, Dept. of Computer Science, University of
British Columbia.
http://citeseer.ist.psu.edu/cache/papers/cs/14916/ftp:zS
zzSzftp.cs.ubc.cazSzftpzSzlocalzSztechreportszSz199
3zSzTR-93-35.pdf/day93model.pdf

[30] E. Mikk, Y. Lakhnech, M. Siegel, G.J. Holzmann,
“Implementing Statecharts in Promela/SPIN,” in Proc.
Workshop on Industrial Strength Formal Techniques,
Boca Raton, Florida, Oct. 1998.

[31] Latella, D., Majzik, I. & Massink, M. “Automatic
verification of a behavioural subset of UML statechart
diagrams using the SPIN model checker,” in Formal
Aspects of Computing, The International Journal of

Formal Methods. Springer. Vol. 11, no. 6, pp 637-
664, 1999.
http://www.inf.mit.bme.hu/FTSRG/Publications/fac99
.pdf

[32] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer & R.
Bharadwaj, “Using Abstraction and Model Checking
to Detect Safety Violations in Requirements Specifica-
tions,” IEEE Transactions on Software Engineering
vol. 24 no. 11, pp 927-948, November 1998.

[33] B.J. Czerny & M.P.E. Heimdahl, “Automated
Integrative Analysis of State-Based Requirements,” in
Proc. 13th IEEE International Conference on Auto-
mated Software Engineering, Honolulu, Hawaii, Oct.
1998.

[34] Holzmann, G. The SPIN Model Checker. Addison-
Wesley, 2003.

[35] Holzmann, G. Design and Validation of Computer
Protocols. Prentice-Hall, 1990.
http://spinroot.com/spin/Doc/Book91.html

[36] Havelund, K., Lowry, M., Park, S., Pecheur, C.,
Penix, J., Visser, W. & White, J. “Formal Analysis of
the Remote Agent - Before and After Flight,” in Proc.
5th NASA Langley Formal Methods Workshop, Wil-
liamsburg, VA, 2000.

[37] Penix, J., Visser, W., Engstrom, E., Larson, A. &
Weininger, N. “Verification of time partitioning in the
DEOS scheduler kernel,” in Proc. 22nd Int’l Confer-
ence on Software Engineering, 2000.

[38] Holzmann, G. & Smith, M. “A practical method for
verifying Event-Driven Software,” in Proc. 21st Int’l
Conference on Software Engineering, 1999.

[39] http://www.spinroot.com

[40] Cimatti, A., Clarke, E., Giunchiglia, F., Pistore, M., &
Roveri, M. “NuSMV: A New Symbolic Model Veri-
fier”. In Lecture Notes in Computer Science, no. 1633.
Springer, Trent, Italy, 1999.
http://nusmv.irst.itc.it/NuSMV/papers/cav99/html/inde
x.html

[41] http://nusmv.irst.itc.it/NuSMV/

[42] Larsen, K., Larsson, F., Pettersson, P. & Yi, W.
“Efficient Verification of Real-Time Systems: Com-
pact Data Structures and State-Space Reduction,” in
Proc.18th IEEE Real-Time Systems Symposium, 1997.

[43] Khatib, L., Muscettola, N. & Havelund, K. “Verifica-
tion of plan models using UPPAAL,” in Formal

 13

Approaches to Agent-Based Systems, First Int’l Work-
shop, Greenbelt, MD, 2000.

[44] http://www.uppaal.com

[45] Brat, G., Havelund, K., Park, S. & Visser, W. “Java
pathfinder—a second generation of a Java model
checker,” in Workshop on Advances in Verification,
July 2000.

[46] http://javapathfinder.sourceforge.net

[47] http://research.microsoft.com/slam/main.htm

[48] http://www.bell-labs.com/project/verisoft/

[49] http://www-cad.eecs.berkeley.edu/~rupak/blast/

[50] http://www-verimag.imag.fr/~iosif/dspin/

[51] http://www.cis.ksu.edu/santos/bandera/

[52] Verma, V., Estlin, T., Jonsson, A., Pasareanu, C., &
Simmons, R. “Plan Execution Interchange Language
(PLEXIL) for Command Execution,” in Proc. Interna-
tional Symposium on Artificial Intelligence, Robotics
and Automation in Space (iSAIRAS), 2005.
http://ti.arc.nasa.gov/people/pcorina/papers/vandi_isai
ras05.pdf

[53] Brat, G., Giannakopoulou, D., Goldberg, A., Have-
lund, K., Lowry, M., Pasareanu, C.S., Venet, A. &
Wisser, W. “Experimental Evaluation of Verification
and Validation Tools on Martian Rover Software,” in
Proc. SEI Software Model Checking Workshop, For-
mal Methods in System Design, vol. 25, issue 2, Pitts-
burgh, PA, pp. 167-198, Mar. 24, 2003

[54] Rushby, J. “Formal verification of algorithms for
critical systems,” in Proc. Conference on Software for
Critical Systems, pp. 1-15, ACM, 1991.

[55] Pike, L. & Johnson, S. D. “The formal verification of
a reintegration protocol,” in Proc. ACM Conference
on Embedded Software (EMSOFT), September, 2005.

[56] Paul Miner, P., Geser, A., Pike, L. & Maddalon, J. “A
unified fault-tolerance protocol,” in Proc. Formal
Techniques, Modeling and Analysis of Timed and
Fault-Tolerant Systems (FORMATS-FTRTFT), LNCS
3253, Springer, 2004.

[57] Cousot, P. “Abstract Interpretation Based Formal
Methods and Future Challenges,” in Informatics, 10
Years Back – 10 Years Ahead. Wilhelm, R. (Ed.),
Lecture Notes in Computer Science 2000, pp. 138 –
156. Springer, 2001.

[58] http://www.spinroot.com/static/

[59] Kremenek, T., Ashcraft, K., Yang, J. & Engler, D.
“Correlation Exploitation in Error Ranking,” in Proc.
12th ACM SIGSOFT Twelfth Int’l Symposium on
Foundations of Software Engineering, Newport
Beach, CA, 2004.

[60] “Fixing Software on the Assembly Line: An Overview
of Coverity’s Static Code Analysis Technology,”
Coverity, Inc., San Francisco, 2005.
http://www.coverity.com

[61] Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J.,
Leavens, G. T., Leino, K. M., & Poll, E. “An over-
view of JML tools and applications,” International
Journal on Software Tools for Technology Transfer,
Feb. 2005

[62] Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson,
G., Saxe, J. B., & Stata, R. “Extended static checking
for Java,” in Proc. ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementa-
tion (PLDI’2002), pp 234–245, 2002.

[63] Kiniry, J., Chalin, P., and Hurlin, C. “Integrating
Static Checking and Interactive Verification: Support-
ing Multiple Theories and Provers in Verification,” in
Proc. Verified Software: Theories, Tools and Experi-
ments 05, Zurich, 2005

[64] Artho, C., Havelund, K. & Biere, A. “High-level data
races,” in Software Testing, Verification and Reliabil-
ity Vol 13, No 4, pp 207-227, Nov 2003.

[65] Artho, C., Havelund, K. & Bierre, A. “Using Block-
Local Atomicity to Detect Stale-Value Concurrency
Errors,” 2nd International Symposium on Automated
Technology for Verification and Analysis. Taipei,
Taiwan, October 2004.

[66] Bensalem, S. & Havelund, K. “Scalable Deadlock
Analysis of Multi-Threaded Programs,” Parallel and
Distributed Systems: Testing and Debugging 05,
Haifa, November 2005.

[67] Smith, B., Millar, W., Dunphy, J., Tung, Y., Nayak,
P., Gamble, E., Clark, M. “Validation and Verification
of the Remote Agent for Spacecraft Autonomy”, in
Proc. IEEE Aerospace Conference (IAC 1999), As-
pen, CO, March, 1999.

[68] Software Reliability Engineering, McGraw-Hill, New
York, 1998.

[69] Vouk, M.A. “Software reliability engineering,” in
Proc. 2000 Annual Reliability and Maintainability

 14

Symposium (RAMS), Los Angeles, CA, IEEE Com-
puter Society.

[70] The Economic Impacts of Inadequate Infrastructure
for Software Testing. National Institute of Technology
and Standards, 2002.

[71] van Lamsweerde, A. “Goal-oriented requirements
engineering: a guided tour,” in Proc. 5th IEEE Interna-
tional Symposium on Requirements Engineering, pp.
249-262, Toronto, Ontario, 27-31 August, 2001.

[72] JPL Special Review Board. Report on the Loss of the
Mars Polar Lander and Deep Space 2 Missions. JPL
D-18709, Jet Propulsion Laboratory, California Insti-
tute of Technology, March 2000.

[73] http://www.uml.org/

[74] D. Harel, “Statecharts: A visual formalism for
complex systems,” Science of Computer Programming
8(3):231-274, 1987

[75] http://www.sysml.org

[76] http://www.vtcorp.com

[77] http://www.threesl.com

[78] C. Nentwich, C., Emmerich, W. , Finkelstein, A. &
Ellmer, E. “Flexible Consistency Checking,” ACM
Transactions on Software Engineering and Methodol-
ogy, vol. 12, pp. 28-63, 2003

[79] McUmber, W.E. & Cheng, B.H.C. “A General
Framework for Formalizing UML with Formal Lan-
guages,” in Proc. 23rd International Conference on
Software Engineering, pp 433-442, May, 2001

[80] Brockmeyer, M., Jahanlan, F., Heitmeyer, C. &
Winner, E. “A flexible, extensible simulation envi-
ronment for testing real-time specifications,” IEEE
Transactions on Computers, 49(11), pp. 1184-1201,
Nov 2000.

[81] Bachelder, E., & Leveson, N. “Animating Safety-
Critical Automation Logic and Intent: a Candidate
Design,” in Proc. 21st Digital Avionics Systems Con-
ference, pp. 7B1-1 – 7B1-10 vol 2, 2002

[82] Rayadurgam, S. & Heimdahl, M.P.E. “Coverage
Based Test-Case Generation Using Model Checkers,”
in Proc. 8th IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems,
pp 83-91, 2001.

[83] Artho, C., Barringer, H., Goldberg, A., Havelund, K.,
Khursid, S., Lowry, M., Pasareanu, C., Rosu, G., Sen,
K., Visser, W. & Washington, R. “Combining test
case generation and runtime verification,” Theoretical
Computer Science, vol. 336, pp. 209-234, 2005.

[84] A. Nikora & C. Heitmeyer, “Automated Specification-
Based Test Case Generation Using SCR”, Workshop
on Software Engineering for High Assurance Systems,
Portland, OR, May 2003
http://www.sei.cmu.edu/community/sehas-
workshop/nikora2/

[85] Richardson, D.J., Aha, S.L. & O’Malley, T.O.,
“Specification-based Test Oracles for Reactive Sys-
tems,” Proc. 14th International Conference on Soft-
ware Engineering, Melbourne, Australia, pp 105-118,
1992.

[86] Meyers, S. Effective C++, Third Edition. Addison
Wesley Professional, 2005.

[87] www.parasoft.com .

[88] Reinhardt, D. Use of the C++ Programming
Language in Safety Critical Systems. MSc SCSE
Project, University of York, UK, 2004.

[89] Hill, M. & Whiting, E. An investigation of the
unpredictable features of the C++ language.
QINETIQ Ltd, Farnborough, UK, 2004

[90] Elrad, T., Filman, R. & Bader, A. “Aspect-Oriented
Programming: Introduction,” Communications of the
ACM, 44(10), October, 2001.

[91] Filman, R., Elrad, T., Clarke, S. & Aksit, M. Aspect-
Oriented Software Development. Addison Wesley
Professional, 2004.

[92] O’Malley, O., Mansouri-Samani, M., Mehlitz, P. &
Penix, J. “Seeing the Invisible: Embedded Tests in
Code that Cannot be Modified,” in Proc. Info-
Tech@Aerospace, 2005.

 15

BIOGRAPHY

Martin S. Feather
is a Principal in the
Software Quality
Assurance group at
JPL. He works on
developing research
ideas and maturing
them into practice,
with particular
interests in the
areas of early phase
requirements en-
gineeering and risk

management and of software validation (analysis, test
automation, V&V techniques). He obtained his BA and MA
degrees in mathematics and computer science from
Cambridge University, England, and his PhD degree in
artificial intelligence from the University of Edinburgh,
Scotland. See http://eis.jpl.nasa.gov/~mfeather for further
details.

Lawrence Z. Markosian

is a Computer Scientist
with QSS Group, Inc.

at NASA Ames Research
Center, where he led a
team developing verifica-
tion tools for C++. He is
a member of the NASA
Software Engineering Ini-
tiative’s Research
Infusion team. Prior to
joining NASA, he was a
founder of Reasoning
Systems., where as VP of

Applications Development he managed technology transfer
of advanced software engineering tools. Markosian has an
undergraduate degree in mathematics from Brown
University and has done graduate work at Stanford
University in logic and artificial intelligence.

